Posted on Leave a comment

What Does “LL” Fault Mean on Eura Drives E800 Series Inverter, and How to Solve It?

Introduction

The E800 series of Eura Drives inverters is a widely used device in the field of industrial control, with its stability and reliability being crucial to users’ production activities. However, in practical applications, users may encounter various faults and issues, among which the “LL” fault displayed upon power-up is a particularly perplexing one.

The label of Eura Drives E800 Inverter

The Meaning of “LL” Fault

Upon power-up, if the E800 series inverter of Eura Drives displays the “LL” fault code and cannot be reset by pressing any buttons, it typically indicates a specific issue with the inverter. Unfortunately, the user manual may not explicitly state the meaning of the “LL” fault code. However, within the communication section, under the explanation of communication address meanings, the operational status parameter address 1005 mentions the inverter status: “OXOC (LL)”.

Despite the brief mention, there is no further elaboration on the “LL” fault code in the manual. Nevertheless, based on our experience and understanding of inverter fault codes, the “LL” fault on Eura Drives E800 series inverters generally indicates a low voltage fault. This means that the input voltage to the inverter is below the acceptable range, causing the inverter to malfunction and display the “LL” fault code.

Physical image of Eura Drives inverter displaying LL fault

Solutions to the “LL” Fault

To resolve the “LL” fault on Eura Drives E800 series inverters, the following steps can be taken:

  1. Check the Input Voltage:
    • Verify that the input voltage supplied to the inverter is within the specified range. For the E800 series, the input voltage range is typically three-phase 380V to 480V (with a tolerance of +10% to -15%) or single-phase 220V to 240V (with a tolerance of ±15%).
    • Use a voltmeter to measure the voltage at the inverter’s input terminals.
  2. Inspect the Power Supply:
    • Ensure that the power supply is stable and reliable. Check for any potential issues such as voltage fluctuations, surges, or drops that may affect the input voltage to the inverter.
  3. Review the Wiring:
    • Examine the wiring between the power source and the inverter to ensure that it is correct and free from any damage or loose connections.
  4. Check the Fuse and Circuit Breaker:
    • Verify that the fuse or circuit breaker protecting the inverter’s power supply circuit is not blown or tripped. Replace it if necessary.
  5. Consult the Manual and Technical Support:
    • If the issue persists after checking the above points, refer to the user manual for additional troubleshooting steps or contact Eura Drives’ technical support for assistance.
  6. Reset the Inverter:
    • Once the issue with the input voltage has been resolved, try resetting the inverter by pressing the reset button or cycling the power to see if the “LL” fault code clears.

Conclusion

The “LL” fault on Eura Drives E800 series inverters is generally indicative of a low voltage issue. By carefully checking the input voltage, power supply, wiring, fuse, and circuit breaker, and taking appropriate corrective actions, users can often resolve this fault and restore normal operation of the inverter. If the problem persists, seeking assistance from the manufacturer’s technical support is recommended.

Posted on Leave a comment

HARS VFD HS710 Series User Manual Usage Guide

I. Introduction to VFD Operation Panel Functions

The HARS VFD HS710 series features a comprehensive and user-friendly operation panel. The panel primarily includes the following keys and indicators:

  • PRG Programming Key: Used to enter or exit the menu for parameter modifications.
  • ENTER Confirmation Key: Confirms parameter settings or enters the menu.
  • ▲ Increment Key and ▼ Decrement Key: Used to increment or decrement data or function codes.
  • Shift Key: Selects the parameter modification bit and display content.
  • RUN Operation Key: Starts the VFD in keyboard operation mode.
  • STOP/RESET Stop/Reset Key: Stops VFD operation or resets faults.
  • FUNC Multi-function Quick Key: Switches functions according to needs.
HS710 Haishang Inverter Operation Panel Function Diagram

Setting Passwords and Restoring Factory Defaults

  1. Setting Passwords:
    • Enter the parameter setting interface (press the PRG key).
    • Use the increment and decrement keys to select FE.29 (User Password) and press the ENTER key to enter.
    • Use the numeric keys to enter the password value (0–65535) and press the ENTER key to confirm. The password setting will take effect after a 3-minute delay.
  2. Restoring Factory Defaults:
    • Enter the parameter setting interface.
    • Select F7.12 (Parameter Initialization) and press the ENTER key to enter.
    • Use the increment key to select “2: Restore all user parameters to factory settings” and press the ENTER key to confirm. After the operation is complete, the parameters will automatically be restored to their factory default values, and F7.12 will automatically reset to 0.

II. Terminal Start/Stop and External Potentiometer Speed Regulation Wiring

Wiring Steps

  1. Power Wiring:
    • Connect the three-phase power supply to the R, S, T terminals of the VFD, ensuring the power supply matches the VFD.
    • Install an air circuit breaker (NPB) between the power supply and input terminals to protect the circuit.
  2. Motor Wiring:
    • Connect the U, V, W terminals of the motor to the corresponding U, V, W terminals of the VFD.
    • Ensure the motor is properly grounded by connecting the E terminal of the VFD to the motor housing.
  3. Start/Stop Wiring:
    • Connect the positive power supply (+24V) of the control circuit to the +24V terminal of the VFD.
    • Connect one end of the external start button to the +24V terminal and the other end to the X1 terminal (Forward Operation).
    • Connect one end of the external stop button to the COM terminal and the other end to the X1 terminal (Forward Operation) or another stop function terminal as configured.
  4. External Potentiometer Speed Regulation Wiring:
    • Connect the center tap of the external potentiometer to the GND terminal of the VFD.
    • Connect one end of the potentiometer to the +10V terminal.
    • Connect the other end of the potentiometer to the AI1 terminal (Analog Input 1) to receive the speed control signal.

Parameter Settings

  1. Operation Command Channel Selection:
    • Enter the parameter setting interface.
    • Select F0.02 (Operation Command Channel Selection) and set it to “1: Terminal Operation Command Channel”.
  2. Analog Input Settings:
    • Select F4.13 (AI1 Input Lower Limit) and F4.15 (AI1 Input Upper Limit) and set appropriate values according to the output range of the potentiometer.
    • Select F4.14 (AI1 Lower Limit Corresponding Physical Quantity Setting) and F4.16 (AI1 Upper Limit Corresponding Physical Quantity Setting) and set them to “Speed Command” so that the potentiometer can control the output frequency.
  3. Frequency Source Selection:
    • Select F0.03 (Main Frequency Source A Selection) and set it to “2: AI1 Analog Given”.
Wiring Diagram for HS710 Haishang Inverter

III. Fault Code Analysis and Troubleshooting

The HARS VFD HS710 series may display various fault codes during operation. Below is an analysis and troubleshooting guide for some common fault codes:

  1. E-01: Overcurrent During Acceleration
    • Possible Causes: Too short acceleration time, overloaded load, improperly set V/F curve.
    • Solutions: Extend the acceleration time, check for abnormal loads, adjust the V/F curve.
  2. E-02: Overcurrent During Deceleration
    • Possible Causes: Too short deceleration time, excessive load inertia.
    • Solutions: Extend the deceleration time, connect an external braking resistor or braking unit.
  3. E-08: Motor Overload
    • Possible Causes: Improperly set V/F curve or torque boost, low grid voltage, overloaded load.
    • Solutions: Adjust the V/F curve and torque boost, check the grid voltage, reduce the load, or select a VFD with a higher power rating.
  4. E-12: Input Phase Loss
    • Possible Cause: Missing phase in the power input.
    • Solution: Check the power supply and wiring to ensure a normal three-phase power supply.
  5. E-13: Output Phase Loss or Current Imbalance
    • Possible Cause: Missing phase in output U, V, W.
    • Solution: Check the output wiring to ensure correct motor connections.

By carefully reading the user manual and following the above guide, users can effectively operate and maintain the HARS VFD HS710 series, ensuring the normal operation of the equipment and extending its service life.

Posted on Leave a comment

Operation Guide for MICOVERT 2003 Series Inverter User Manual from Michael

  1. Operation Methods for Basic Menus
    The operation of the MICOVERT 2003 series inverter from Michael is primarily completed through the Handheld Programmer HPG60. The HPG60 is equipped with an LCD display capable of showing 4 lines of text, 6 buttons, and a red LED indicator. Below are the operation methods for the basic menus:
Michael INVERTER MICOVERT 2003 series operation panel

1.1 Entering Menus
Selecting Main Menu: Use the “LEFT” or “RIGHT” buttons to choose from 8 main menus, such as “Speed”, “Speed Curve”, “Start/Stop”, etc.
Entering Submenu: Press the “DOWN” button to enter the submenu of the selected main menu.
Selecting Parameters: In the submenu, use the “DOWN” or “UP” buttons to scroll through and select parameters.

1.2 Setting Parameters
Changing Parameter Values: Use the red “UP” or “DOWN” buttons to select new parameter values.
Saving or Exiting: If the parameter change is correct, press the “ENTER” key to save the new value; if you need to discard the change, press the “ESC” key to exit.

1.3 Start/Stop Menu Settings
The Start/Stop menu is used to set parameters related to the start and stop of the inverter, such as start delay and braking ramp.

Start Delay: Adjusts the time for the motor to start with the brake on to avoid abnormalities caused by delays in contactor and control system actions. The setting range is 0-1000ms.
Braking Ramp: Adjusts the deceleration ramp from V0 speed to zero speed to improve stopping accuracy and reduce vibration. The setting range is 0.01-1.00 m/s².

1.4 Speed Menu Settings
The speed menu is used to set various operating speeds of the inverter, including re-leveling speed, inspection speed, creep speed, medium speed, and high speed.

Re-leveling Speed (Vn): The setting range is 0.5-100 r.p.m., used for re-leveling due to position changes caused by wire rope elongation after elevator unloading.
Inspection Speed (Vi): The setting range is 10-1500 r.p.m., used for inspection operation on the car roof.
Creep Speed (V0): The setting range is 1-100 r.p.m., used for deceleration before elevator stopping.
Medium Speed (V1), High Speed (V2/V3): The setting range is 10-3000 r.p.m., used for elevator operation at different speed segments.

Terminal diagram of the Michael INVERTER MICOVERT 2003 series
  1. Input and Output of Control Signals
    2.1 Input of Control Signals
    The input of control signals is mainly achieved through various signal terminals on the inverter. Below are the functions and setting methods of some key signal terminals:

Direction Signals: Include “UP” (up direction) and “DOWN” (down direction) signal terminals. When starting the inverter, direction commands and operation commands need to be given simultaneously.
Inspection Speed Signal (Vinsp): Used to set the inspection speed. When operating at inspection speed, the operation command and direction command need to be withdrawn simultaneously.
Speed Signals (V0, V1, V2, V3): Used to set creep speed, medium speed, and high speed respectively.

2.2 Output of Control Signals
The inverter is equipped with multiple output relays for controlling different functions of the elevator. Below are the functions of some key output relays:

Ready Relay: Engages after the inverter completes its self-check, used for elevator control warning.
Brake Relay: Engages 0.5 seconds after the direction command and speed command are given, causing the mechanical brake contactor to engage.
Operation Relay: Engages when the direction command and speed command are given, and releases 0.5 seconds after the motor reaches zero speed.

  1. Multi-Speed Operation
    The MICOVERT 2003 inverter supports multi-speed operation. By setting different speed parameters (V0, V1, V2, V3), smooth acceleration and deceleration of the elevator at different stages can be achieved. For example, use lower speeds (V0 or V1) during the elevator start-up phase, higher speeds (V2 or V3) during the stable operation phase, and decelerate to creep speed (V0) again during the stopping phase.
  2. Encoder Interface and Settings
    The MICOVERT 2003 inverter supports various encoder interfaces, including HTL level encoder, TTL level encoder, Resolver interface, absolute encoder, etc. Below are the basic steps for encoder wiring and settings:

4.1 HTL Level Encoder
Wiring: Connect the A phase, B phase, +15VDC, 0VDC, and shield wire of the encoder to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “HTL” and enter the number of pulses per revolution.

4.2 TTL Level Encoder
Wiring: Connect the A phase, B phase, +5VDC, 0VDC, and shield wire of the encoder to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “TTL” and enter the number of pulses per revolution.

4.3 Resolver Interface
Wiring: Use the dedicated conversion board RES01 to connect the output signals (SINUS and COSINUS) of the Resolver to the conversion board, and then connect the conversion board to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “Resolver” and enter the relevant parameters.

4.4 Absolute Encoder
Wiring: Use the dedicated absolute conversion board ABS01 to connect the output signals of the absolute encoder to the conversion board, and then connect the conversion board to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as the corresponding absolute encoder type (e.g., SSI, ENDAT), and enter the relevant parameters.

Wiring diagram for the MICOVERT 2003 series inverter by Michael
  1. Fault Code Identification and Solutions
    When the inverter malfunctions, the LCD display will show the corresponding error code. Users need to take appropriate solutions based on the error code. Below are some common fault codes and their handling methods:

Error 1 (IPM Overcurrent): Check if the motor parameters are correct or if the IPM module is damaged.
Errors 2-4 (U/V/W Phase Overcurrent): Similarly, check the motor parameters or IPM module.
Error 5 (Heat Sink Overtemperature): Check if the cooling system is working normally or reduce the load.
Error 6 (Intermediate Circuit Voltage Too High): Check if the braking resistor is connected normally or damaged.
Error 7 (Intermediate Circuit Voltage Too Low): Check if the main power supply voltage is too low.
Errors 8-9 (Operation Contactor Not Engaged or Main Power Supply Missing a Phase): Check if the contactor or main power supply connection is normal.
Errors 10-16: Involve issues such as missing direction commands, conflicting direction commands, no pulse signal from the encoder, etc. Check the relevant signals and wiring according to the specific situation.

By carefully reading and following the above instructions, users can better operate and maintain the MICOVERT 2003 series inverter from Micor, ensuring its stable operation and efficient performance.

Posted on Leave a comment

Operation Guide for Hpmont HD20 Series Inverter User Manual

I. Introduction to Inverter Operation Panel Functions
1.1 Function of Operation Panel Buttons
The operation panel of the Hpmont HD20 series inverter is equipped with multiple buttons and indicators for controlling the inverter and displaying its status. The main button functions are as follows:

Function Description Diagram of HPMONT VFD HD20 Operation Panel

****: Enter or exit programming mode.
****: When controlled via the operation panel, jog start the inverter.
****: When controlled via the operation panel, start the inverter.
****: When controlled via the operation panel, stop the inverter or perform fault reset.
****: Increment the functional parameter or parameter setting value.
****: Decrement the functional parameter or parameter setting value.
****: Select the modification digit of the set data or cyclically switch the display state parameters between stop/run.
****: Enter the submenu or confirm and save the settings.

1.2 Password Function Setting and Unlocking
To prevent unauthorized modifications, the inverter has a user password protection function. The following are the steps for setting, unlocking, and modifying the password:

Password Setting
Press ** to enter programming mode.
Use and to select parameter F01.00.
Press ** to enter password setting mode, and use and to input the desired password value (00000-65535).
After inputting, press ** to confirm and save, then exit programming mode.

Password Unlocking
If prompted to enter a password during operation panel use, press ** to enter password entry mode.
Use and to input the previously set password.
After inputting, press ** to confirm. If the password is correct, unlocking is successful, and operation can continue.

Password Modification
Press ** to enter programming mode.
Use and to select parameter F01.00.
Press ** to enter password modification mode, and use and to input the new password value.
After inputting, press ** to confirm and save, then exit programming mode.

II. Terminal Start/Stop and External Potentiometer Speed Adjustment Methods
2.1 Terminal Start/Stop Wiring and Parameter Setting
Wiring Method
Forward control terminal (DI1): Connect the forward start signal.
Reverse control terminal (DI2): Connect the reverse start signal.
Common terminal (COM): Connect to the other end of DI1 and DI2.

Parameter Setting
Enter programming mode, set parameter F15.00 to 2 (forward function).
Set parameter F15.01 to 3 (reverse function).
Set other relevant parameters as needed, such as setting F00.11 to 1 (terminal operation command channel).

2.2 External Potentiometer Speed Adjustment Wiring and Parameter Setting
Wiring Method
Connect terminal 1 of the external potentiometer to the +10V terminal of the inverter.
Connect terminal 2 of the external potentiometer to the AI1 terminal of the inverter.
Connect terminal 3 of the external potentiometer to the GND terminal of the inverter.

Parameter Setting
Enter programming mode, set parameter F16.01 to 2 (frequency setting channel).
Adjust F16.05 (AI1 offset) and F16.06 (AI1 gain) as needed to calibrate the speed adjustment range.
Ensure F00.10 is set to 3 (analog setting) to use the external potentiometer for speed adjustment.

HPMONT VFD HD20 series control circuit wiring diagram

III. Analysis and Solutions for Inverter Fault Codes
3.1 Common Fault Codes and Causes
E0001: Overcurrent protection. Possible causes include motor stall, excessive load, or incorrect parameter settings.
E0007: Overvoltage speed loss. Possible causes include excessively short deceleration time settings or excessive load inertia.
E0015: Input phase loss. Possible causes include input power phase loss or loose wiring.
E0016: Output phase loss. Possible causes include motor or cable damage.
E0017: Inverter overload. Possible causes include excessive load or poor heat dissipation.

3.2 Solutions
E0001: Check if the motor and load are normal, adjust parameters F09.07 (motor torque boost) and F09.09 (motor slip compensation gain).
E0007: Increase deceleration time, adjust parameters F19.18 (overvoltage speed loss function selection) and F19.19 (overvoltage speed loss point).
E0015: Check the input power supply and wiring to ensure normal three-phase power.
E0016: Check motor and cable connections to ensure no damage or looseness.
E0017: Check if the load is excessive, improve heat dissipation conditions, adjust parameters F20.01 (overload pre-alarm detection level) and F20.02 (overload pre-alarm detection time).

Summary
This operation guide provides a detailed introduction to the functions of the operation panel, wiring and parameter settings for terminal start/stop and external potentiometer speed adjustment methods, as well as analysis and solutions for common fault codes of the Hpmont HD20 series inverter. By following this guide, users can smoothly operate and maintain the inverter, ensuring normal equipment operation. During operation, please ensure safety and avoid electric shock and other potential risks. For complex issues, please contact Longi electrical technicians for assistance.

Posted on Leave a comment

User Manual for Invt GD300-01A-RT Series VFD Dedicated for Air Compressors – Usage Guide

This guide aims to assist users in better understanding and utilizing the Invt GD300-01A-RT Series VFD, a single frequency converter specifically designed for air compressor control, featuring efficiency, ease of use, and reliability. Below is a detailed usage guide.

GD300-01A-RT menu interface diagram

I. Operating Methods for Controlling Air Compressors

  1. Wiring Method
    Main Circuit Wiring:
    Connect the power input terminals (R, S, T or L1, L2, L3) to the electrical grid.
    Connect the motor output terminals (U, V, W) to the main motor of the air compressor.
    The grounding terminal PE must be grounded with a grounding resistance of less than 10Ω.
    Control Circuit Wiring:
    Connect signal lines, such as pressure sensors and temperature sensors, to the corresponding input terminals (e.g., P1+, P1-) as per actual requirements.
    Connect external control signals (e.g., start, stop, load, unload) to the respective input terminals (e.g., S1, S2, S3).
    If needed, connect fault outputs, alarm outputs, etc., to external devices.
  2. Parameter Settings
    Motor Parameter Settings:
    Enter the “Main Unit Parameter Settings” interface and set parameters such as motor type, rated power, rated frequency, rated voltage, and rated current based on the actual motor nameplate parameters.
    Perform motor parameter self-learning to ensure the VFD can accurately control the motor.
    Air Compressor-Specific Parameter Settings:
    Set the range and calibration points for pressure sensors and temperature sensors.
    Set parameters such as loading pressure, unloading pressure, no-load operating frequency, and minimum loading operating frequency to suit the operational needs of the air compressor.
    Set parameters such as fan control mode and maintenance timeout as required.

II. Using External Terminals for Starting and External Potentiometer for Frequency Adjustment

  1. Wiring Method
    External Start Terminal Wiring:
    Connect the external start signal (e.g., push-button switch) to the S1 terminal (forward start) and the COM terminal.
    For reverse start, connect the signal to the S2 terminal.
    External Potentiometer Wiring:
    Connect the center tap of the external potentiometer to the AI1 terminal (analog input 1).
    Connect the other two terminals of the potentiometer to +10V and GND terminals to provide the required power supply voltage for the potentiometer.
  2. Parameter Settings
    Operation Command Channel Settings:
    Enter the “Basic Function Group” parameter settings and set P00.01 to 1 (terminal operation command channel).
    Frequency Command Selection:
    Set P00.06 to 1 (analog P1-setting) to enable external potentiometer frequency adjustment.
GD300-01A-RT system wiring diagram

III. Setting Password Function and Restoring Factory Settings

  1. Setting Password Function
    Enter the “Human-Machine Interface Group” parameter settings and locate the P07.00 (user password) parameter.
    Enter the desired password value (0~65535) and save the settings.
    After setting the password, the correct password must be entered for parameter modification.
  2. Restoring Factory Settings
    Enter the “Basic Function Group” parameter settings and locate the P00.18 parameter.
    Set P00.18 to 1 (restore default values) and save the settings.
    The VFD will automatically restore to the factory default parameter settings.

IV. Fault Analysis and Handling Methods

  1. Fault Code Query
    When a fault occurs in the VFD, first check the fault code on the VFD panel.
    Refer to the “VFD Faults and Countermeasures” section in the manual based on the fault code to find possible fault causes and corrective actions.
  2. Fault Troubleshooting Steps
    Check the power supply and wiring: Ensure normal power input and secure wiring.
    Check external control signals: Ensure normal input of external control signals (e.g., start, stop, load, unload).
    Check sensor signals: Ensure normal input of signals from pressure sensors, temperature sensors, etc., and correct range and calibration point settings.
    Check the motor and load: Ensure normal motor operation and no abnormalities in the load.
  3. Fault Handling Examples
    Overcurrent Fault (OC1, OC2, OC3):
    Check if the grid voltage is too low.
    Check for short circuits or locked rotor phenomena in the motor and load.
    Increase the acceleration/deceleration time or select a VFD with a higher power.
    Overvoltage Fault (OV1, OV2, OV3):
    Check if the input power voltage is too high.
    Check for energy feedback phenomena and add energy consumption braking components if necessary.
    Undervoltage Fault (UV):
    Check if the grid voltage is too low or fluctuating significantly.

By following this usage guide, users can better grasp the operation of the Invt GD300-01A-RT Series VFD dedicated for air compressors, ensuring stable operation of the air compressor system.

Posted on 2 Comments

ABB VFD ACS510 Series F0035 Fault (Fault 35) Cause Analysis and Troubleshooting Methods

Introduction

The ABB VFD (Variable Frequency Drive) ACS510 series is widely utilized in industrial applications due to its high efficiency, reliability, and ease of maintenance. However, users may encounter various fault alarms during operation, with F0035 (Fault 35) being a relatively common one. This article will combine the content of the ABB VFD ACS510 series user manual with relevant online information to provide a detailed analysis of the causes of F0035 faults and corresponding troubleshooting methods.

ACS510 vfd FAULT 35

Overview of F0035 Fault

The F0035 fault, also known as “OUTPUT WIRING” fault, refers to an alarm triggered by the VFD when it detects incorrect connections between the input power cables and output power cables. According to the ABB VFD ACS510 series user manual, when the drive is stopped, this fault code monitors the correct connection of the input and output power cables. If a connection error is detected, the VFD will alarm and stop working to prevent possible equipment damage or safety accidents.

Cause Analysis of F0035 Fault

1. Incorrect Input Cable Connection

Incorrect input cable connection is one of the main causes of F0035 faults. If the supply voltage is mistakenly connected to the drive output terminal, the VFD will be unable to function correctly and will trigger an F0035 fault alarm. This connection error may result from negligence or misoperation by the wiring personnel.

2. Incorrect Output Cable Connection

In addition to incorrect input cable connections, incorrect output cable connections can also lead to F0035 faults. If the output power cables of the drive are connected improperly, such as reversed phase sequence or phase loss, the VFD will be unable to control the motor correctly, thereby triggering a fault alarm.

3. Capacitance Effect of Input Power Cables

In some cases, even if the input power cables are connected correctly, a large capacitance of the cables may cause false F0035 fault alarms. Especially when the input power cables are connected in a delta configuration, the capacitance effect may be more pronounced. This is because capacitance generates current in AC circuits, interfering with the normal operation of the VFD.

4. Environmental Interference

Environmental factors, such as electromagnetic interference, excessive temperature, and high humidity, may also affect the normal operation of the VFD, triggering F0035 faults. Particularly in industrial settings, electromagnetic interference is a non-negligible issue.

Troubleshooting Methods for F0035 Fault

1. Check and Correct Cable Connections

First, it is necessary to carefully inspect the connections of the input power cables and output power cables. Ensure that the supply voltage is correctly connected to the input terminal of the VFD, and the output power cables are correctly connected to the motor terminal, with phase sequence, phase, and other parameters meeting requirements. If any connection errors are found, they should be corrected immediately.

2. Disable Wiring Fault Detection Using Parameter 3023

If the capacitance of the input power cables is large and frequently triggers false F0035 fault alarms, consider disabling the wiring fault detection function using parameter 3023 WIRING FAULT. In the stopped state of the VFD, set the value of parameter 3023 to 1 to disable wiring fault detection. However, it should be noted that disabling this function may reduce the fault protection capability of the VFD, so it should be used cautiously.

3. Enhance Electromagnetic Interference Protection

For F0035 faults caused by electromagnetic interference, the following measures can be taken for protection:

  • Use shielded cables or twisted pairs with better anti-interference performance;
  • Install filters or isolation transformers at the input and output terminals of the VFD;
  • Install the VFD away from sources of electromagnetic interference, such as high-power motors and high-frequency welding equipment.

4. Improve Operating Environment

To address F0035 faults caused by environmental factors, the following measures can be taken to improve the operating environment:

  • Maintain cleanliness and dryness in the VFD operating environment to avoid the impact of dust and moisture on the VFD;
  • Enhance ventilation and heat dissipation to ensure that the VFD operating temperature remains within the normal range;
  • For VFDs installed outdoors or in harsh environments, add protective covers or take other protective measures.

5. Regular Maintenance and Inspection

Regular maintenance and inspection of the VFD are effective measures to prevent F0035 faults. Maintenance personnel should regularly check cable connections, measure input and output voltages and currents to ensure their normalcy, and clean dust inside the VFD. Additionally, they should pay attention to the operating status and alarm records of the VFD to promptly identify and address potential issues.

Conclusion

The F0035 fault is a common fault alarm in the ABB VFD ACS510 series, with causes including incorrect input cable connections, incorrect output cable connections, capacitance effects of input power cables, and environmental interference. To address these causes, corresponding troubleshooting methods can be adopted, such as checking and correcting cable connections, disabling wiring fault detection using parameter 3023, enhancing electromagnetic interference protection, improving the operating environment, and regular maintenance and inspection. By implementing these measures, the incidence of F0035 faults can be effectively reduced, improving the operational reliability and stability of the VFD.

Posted on Leave a comment

Operation Guide for Mitsubishi VFD FR-D700 (D740,D720)Series User Manual

I. Introduction to VFD Operation Panel Functions
The operation panel of the Mitsubishi VFD FR-D700 series(D740,D720) is straightforward, facilitating various settings and operations for users. The panel primarily includes the following buttons and a rotary potentiometer:

Mitsubishi VFD FR-D700 Operation Panel Function Diagram

RUN: Press this button to start the VFD.
STOP/RESET: Press this button to stop the VFD or reset alarms.
MODE: Mode switching button used to toggle between different setting and display modes.
SET: Confirmation button used to confirm current settings or enter the next menu level.
PU/EXT: Operation mode switching button used to switch between PU (operation panel) mode and EXT (external terminal) mode.
Rotary Potentiometer: Used to manually adjust the output frequency of the VFD.

Setting Operation Modes
The VFD offers multiple operation modes, which can be set via parameter P79:

P79=0: PU operation mode, controlled via buttons and the rotary potentiometer on the operation panel.
P79=2: External operation mode, receiving start, stop, and speed commands via external terminals.

II. Terminal Start/Stop and External Potentiometer Speed Adjustment
Wiring Instructions
To achieve terminal start/stop and external potentiometer speed adjustment, proper wiring to the corresponding terminals of the VFD is required. Typically, the wiring is as follows:

STF (Forward Start): Connect to the normally open contact of an external start button or relay.
STR (Reverse Start): If reverse function is needed, connect to the normally open contact of an external reverse start button or relay.
SD (Stop): Connect to the normally closed contact of an external stop button or relay.
RH, RM, RL (Speed Setting): These terminals are typically used to connect an external potentiometer for speed adjustment. Among them, RH and RL are connected to the two ends of the potentiometer, and RM is connected to the sliding contact of the potentiometer.

Parameter Settings
Apart from proper wiring, relevant parameters need to be set to ensure the VFD operates as expected:

P79: Set to 2 to select external operation mode.
Pr7, Pr8: Set acceleration and deceleration times respectively to suit different application needs.
Pr9: Set the electronic overcurrent protection parameter to protect the VFD and motor from overcurrent damage.

Mitsubishi VFD FR-D700 Series External Wiring Diagram

III. VFD Fault Code Analysis and Solutions
When faults occur in the Mitsubishi VFD FR-D700 series, corresponding error codes are displayed, allowing users to analyze and resolve the faults. Below are some common fault codes and their solutions:

ER1: Overcurrent during acceleration. Check if the motor is overloaded, if there is a short circuit in the output, and if the acceleration time is set too short.
ER2: Overcurrent during constant speed. Check for sudden changes in load, and if there is a short circuit in the output.
ER3: Overcurrent during deceleration. Check for rapid deceleration, if there is a short circuit in the output, and if the motor’s mechanical brake is applied too early.
OL: Overspeed prevention (overcurrent). Check if the motor is overloaded.
TH: Motor overheat. Check if the motor is operating overloaded for a long time, if the ambient temperature is too high, and if the cooling system is functioning properly.
PS: PU stop. Check if the STOP button on the operation panel is pressed.
MT: Main circuit terminal abnormality. Check if the connections of the main circuit terminals are loose or damaged.
uV: Undervoltage protection. Check if the power supply voltage is too low, and if there is a large-capacity motor starting up causing instantaneous voltage drop.

Solutions
For overcurrent faults (ER1, ER2, ER3, OL): First, check if the motor and load are normal, then adjust acceleration time, deceleration time, and electronic overcurrent protection parameters.
For overheating faults (TH): Improve the motor’s cooling conditions, such as adding fans or lowering the ambient temperature.
For PU stop (PS): Confirm if the STOP button was pressed by mistake; if not, check the related control circuits.
For main circuit terminal abnormality (MT): Check and tighten the connections of the main circuit terminals, and replace if damaged.
For undervoltage protection (uV): Check if the power supply voltage is stable, and consider adding a power supply voltage stabilizing device.

The above is the operation guide for the Mitsubishi VFD FR-D700 series user manual, hoping to assist users in practical operations. If encountering other issues during use, it is recommended to refer to the detailed user manual of the VFD or contact professional technicians of longi for consultation.

Posted on Leave a comment

User Guide for Danfoss VLT2800 Frequency Converter


Danfoss VLT2800 Frequency Converter User Guide

1. Introduction to the Operation Panel

The operation panel of the Danfoss VLT2800 frequency converter is designed to be simple and user-friendly, allowing users to control basic functions and adjust parameters. The key components of the panel are:

  1. Display Screen: Shows current status, parameter values, fault codes, etc.
  2. Navigation Keys: Used to navigate between menus and parameters, including arrow keys for up, down, left, and right.
  3. Operation Keys: Includes keys for start, stop, reset, and other control functions for easy operation.
  4. Quick Menu Key: Provides quick access to commonly used menus and parameters.
  5. Change Data Keys: These keys allow users to modify displayed parameters and adjust the operating status of the converter.

With these buttons, users can perform parameter settings, switch operating modes, and monitor the running status of the frequency converter in real-time.

VLT2800 Multi Panel Function Diagram

2. Parameter Initialization and Adjustment

When using the VLT2800 frequency converter for the first time or when restoring factory settings, follow these steps for parameter initialization and adjustment:

  1. Restoring Factory Settings:
  • Enter the main menu and select the “Restore Factory Settings” option. The frequency converter will reset all user settings to default parameters.
  1. Motor Parameter Settings:
    Configure the motor parameters through parameter group 102-106:
  • 102: Motor Power (PM,N): Set the motor’s rated power.
  • 103: Motor Voltage (UM,N): Set the motor’s rated voltage.
  • 104: Motor Frequency (fM,N): Set the motor’s rated working frequency.
  • 105: Motor Current (IM,N): Set the motor’s rated current.
  • 106: Motor Speed (nM,N): Set the motor’s rated speed.
  1. Speed Control Mode:
  • Choose between open-loop or closed-loop speed control to ensure precise control based on application requirements.
VLT2800 Control Circuit Wiring Diagram

3. Start/Stop Function and External Potentiometer Adjustment

1. Start and Stop Functions via Terminals

The Danfoss VLT2800 frequency converter can be started and stopped using terminal connections. Follow these steps for terminal wiring:

  • Start Signal: Connect the start signal to terminals 12 (START) and GND. The converter will start the motor according to the set parameters once the signal is received.
  • Stop Signal: Connect the stop signal to terminals 13 (STOP) and GND. The motor will decelerate and stop as per the set deceleration time when the stop signal is triggered.
  • Reset Function: Connect an external reset signal to terminal 16 (RESET) to reset the converter when needed.
2. External Potentiometer for Speed Adjustment

To adjust the output frequency using an external potentiometer, follow these wiring steps:

  • Potentiometer Wiring:
  • Connect the positive terminal of the potentiometer to terminal 55 (+10V output), the negative terminal to terminal 53 (analog input), and ground to GND.
  • Parameter Settings:
  1. In parameter group 300, set the analog input type and configure terminal 53 to be controlled by the external potentiometer.
  2. Adjust parameters 204 (RefMIN) and 205 (RefMAX) to set the minimum and maximum reference values corresponding to the potentiometer.

By adjusting the potentiometer, the frequency converter’s output frequency can be dynamically controlled, allowing for smooth linear speed regulation from minimum to maximum.

4. Fault Code Analysis and Troubleshooting

The VLT2800 frequency converter features a self-diagnostic function. If a fault occurs during operation, the relevant fault code will be displayed on the control panel. Below are some common fault codes and their solutions:

  1. E1: Overcurrent Protection
  • Cause: Fast motor acceleration, excessive load, or motor short circuit.
  • Solution: Check motor wiring, reduce load, or extend the acceleration time.
  1. E2: Overvoltage Protection
  • Cause: Power supply voltage too high or large voltage fluctuations.
  • Solution: Check if the power supply voltage is within the specified range, and use a voltage stabilizer if necessary.
  1. E3: Undervoltage Protection
  • Cause: Power supply voltage too low or a sudden voltage drop.
  • Solution: Ensure stable power supply and check voltage levels.
  1. E4: Overheating Protection
  • Cause: Poor heat dissipation or high ambient temperature.
  • Solution: Check the cooling system of the converter, ensure the fan is working properly, and reduce the environmental temperature or improve ventilation if needed.
  1. E14: Communication Failure
  • Cause: Communication line fault or loss of communication between the controller and the converter.
  • Solution: Inspect communication cable connections and reconfigure communication parameters.

By setting the correct parameters, ensuring proper wiring, and accurately identifying fault codes, users can ensure the stable operation of the Danfoss VLT2800 frequency converter and troubleshoot issues as they arise.


This guide provides users with a comprehensive overview of the VLT2800 frequency converter, covering panel operation, parameter setup, terminal functions, and troubleshooting to help them get started and maintain smooth operation of the device.

Posted on Leave a comment

Operation Manual and User Guide for Shihlin VFD SS Series

I. Description of Operation Panel Functions and Process for Restoring Factory Default Settings

  1. Description of Operation Panel Functions

The operation panel of Shihlin VFD SS series is powerful, facilitating user settings and monitoring. The operation panel mainly includes the following function keys and indicators:

RUN/STOP Key: Used to start and stop the VFD.
Frequency Adjustment Knob: Used to manually adjust the output frequency of the VFD.
Mode Switch Key: Used to switch between different operation modes, such as PU mode, JOG mode, external mode, etc.
Monitor/Set Key: Used to switch between monitor mode and set mode.
LED Indicators: Including running indicator, frequency monitor indicator, voltage monitor indicator, etc., used to indicate the current status of the VFD.

  1. Process for Restoring Factory Default Settings

If you need to restore the VFD parameters to their factory defaults, follow these steps:

Switch to Monitor Mode: Press the Monitor/Set key to ensure the VFD is in monitor mode.
Read Parameter Pr998: Enter the parameter setting mode on the operation panel, find parameter Pr998, and read its current value.
Write Parameter Pr998: Write the read Pr998 value again. At this point, the VFD will automatically initialize the parameters, and all parameters will be restored to their factory defaults.
Restart the VFD: To ensure the parameters are successfully restored, it is recommended to restart the VFD.

Shilin VFD SS series operation panel DU01

II. Terminal Start and External Potentiometer Speed Adjustment Wiring and Parameter Debugging

  1. Terminal Start Wiring and Parameter Debugging

If you need to start the VFD via terminal, you need to connect the external control signal to the corresponding control terminal of the VFD. Taking the STF (forward start) terminal as an example, the wiring and parameter debugging process is as follows:

Wiring: Connect the positive pole of the external control signal to the STF terminal, and the negative pole to the common terminal SD.
Parameter Settings:
Enter the parameter setting mode, set Pr79 to 2 (external mode).
Set parameters such as start frequency (Pr13) and upper limit frequency (Pr1) as needed.
Ensure that the STF terminal function is correctly set (default is forward start function).

  1. External Potentiometer Speed Adjustment Wiring and Parameter Debugging

If you need to adjust the output frequency of the VFD through an external potentiometer, you need to connect the output signal of the potentiometer to the analog signal input terminal of the VFD. Taking a 0~10V voltage signal as an example, the wiring and parameter debugging process is as follows:

Wiring: Connect the positive output of the potentiometer to the AI1 (2-5) terminal of the VFD, and the negative output to the common terminal GND.
Parameter Settings:
Enter the parameter setting mode, set Pr73 to 1 (select 0~10V voltage signal input range).
Set Pr38 to the desired voltage-frequency conversion relationship, for example, when the potentiometer outputs 10V, the VFD outputs a frequency of 50Hz.
Set Pr79 to a suitable operation mode, such as external mode or mixed mode.
Ensure that other relevant parameters (such as acceleration and deceleration time, torque compensation, etc.) have been set according to actual needs.

Shilin VFD SS series wiring diagram

III. Analysis and Solutions for Fault Alarms

The Shihlin VFD SS series may encounter various fault alarms during operation. Below are some common fault alarm codes, their analysis, and solutions:

ERR (Error):
Cause: May be caused by insufficient power supply voltage, the RESET terminal being connected, poor contact between the operator and the main unit, internal circuit failure, or CPU malfunction.
Solution: Check if the power supply voltage is normal; disconnect the reset switch; ensure good connection between the operator and the main unit; if the problem persists, the VFD may need to be replaced or restarted.
OC1 (Overcurrent During Acceleration), OC3 (Overcurrent During Deceleration):
Cause: Usually caused by excessive load, too short acceleration/deceleration time, or abnormal regenerative braking resistor.
Solution: Check if the load is excessive and reduce it appropriately; extend the acceleration/deceleration time; check if the regenerative braking resistor is connected properly and has the correct resistance.
OV2 (Overvoltage at Constant Speed):
Cause: May be caused by excessive voltage between terminals P-N.
Solution: Check if a regenerative braking resistor is connected between terminals P-PR and if the connection is normal; if regenerative function is not needed, short-circuit between P-PR.
THT (IGBT Module Overheat):
Cause: The IGBT module temperature is too high.
Solution: Check if the ambient temperature around the VFD is too high; ensure good heat dissipation of the VFD; check if the setting of the electronic thermal relay capacity is reasonable.
BE (Brake Transistor Abnormal):
Cause: External motor thermal relay actuation.
Solution: Check if the capacity of the external thermal relay matches the motor capacity; reduce the load to avoid frequent actuation of the thermal relay.

By carefully reading this user manual and following the above operation guide, users can better understand and use the Shihlin VFD SS series, ensuring normal operation and efficient working of the equipment.

Posted on Leave a comment

Analysis and Solutions for Overheating Alarm 2010 or Fault Code F009 in ABB ACS510 Series Drives

Introduction
ABB ACS510 series drives are widely used in industrial automation to control various types of motors. Overheating alarms (2010) and fault codes (F009) are common issues that relate to motor overheating. If not addressed promptly, these issues can lead to motor or drive damage. This article will explain the mechanisms behind overheating alarms 2010 and fault code 9 in detail and offer solutions to address them.


ACS510 alarm 2010 physical picture

1. Overview of the Alarm and Fault

When the ABB ACS510 series drive detects that the motor temperature exceeds safe limits, it may display an overheating alarm (2010) or a fault code (F009). The key difference between these two is:

  • Overheating Alarm 2010: The drive detects that the motor temperature is higher than the set threshold, issuing a warning but allowing the drive to continue running, giving the user time to intervene.
  • Fault Code 9: The motor temperature rises to a critical level, and the drive shuts down to prevent further damage to the motor or drive.

2. Mechanism of Overheating Alarms and Faults

In traditional motor temperature protection systems, thermal resistors (PTC or NTC) are used to directly monitor the motor’s internal temperature. When the motor exceeds a set temperature, the resistance value of the thermal resistor changes, and the drive detects this, triggering alarms or shutdowns. However, in the ABB ACS510 series, there is no direct connection to the motor’s thermal resistor. Instead, the drive uses a sophisticated thermal model algorithm to estimate the motor temperature.

1. The Relationship Between Motor Current and Temperature

The motor current is a key factor in determining the motor’s temperature during operation. Generally, the higher the current, the greater the heat generated in the motor windings due to resistive losses (I²R losses). However, the relationship between current and temperature is not linear. The temperature rise in the motor also depends on:

  • Thermal time constant: The rate at which the motor heats up and cools down is affected by its thermal time constant. Even if the current increases suddenly, the motor temperature doesn’t immediately rise to dangerous levels because the motor has thermal inertia. Similarly, cooling takes time once the motor is stopped.
  • Cooling efficiency: The effectiveness of motor cooling also influences temperature changes, especially when running at low or zero speed. At low speeds, cooling is less effective, and the temperature tends to rise faster.

2. Thermal Model Algorithm in the Drive

The ABB ACS510 drive estimates motor temperature based on the actual current, time, and set parameters, even without direct temperature sensor input.

  • Parameter 3005 (Motor Thermal Protection): This parameter enables or disables motor thermal protection. When enabled, the drive estimates the motor’s temperature based on current and time.
  • Parameter 3006 (Motor Thermal Time Constant): This defines the motor’s thermal time constant, determining how quickly the motor heats up or cools down. The longer the time constant, the slower the temperature rise, and vice versa.
  • Parameter 3007 (Zero Speed Cooling Factor) and 3009 (Full Speed Cooling Factor): These parameters influence how the motor cools at low and high speeds, respectively. Since motor cooling fans often rely on motor speed, cooling is less effective at low speeds, making the motor more prone to overheating.

The drive uses these parameters to determine if the motor is at risk of overheating. When the current is high for an extended period, the drive accumulates the thermal load, and once the temperature estimate reaches the threshold, it triggers either an alarm (2010) or a fault (9).

3. Solutions for Resolving the Fault

When an overheating alarm (2010) or fault code (9) occurs, the following steps can be taken to troubleshoot and resolve the issue:

1. Check the Motor Load and Operating Conditions

First, verify if the motor is overloaded. A motor running at high load or full load for an extended time will heat up quickly. If the load exceeds the motor’s rated capacity, reduce the load or stop the motor temporarily to allow it to cool down.

2. Check Drive Parameter Settings

  • Parameters 3005 to 3009: Ensure that these parameters are correctly configured, particularly the motor thermal time constant (3006) and cooling factors (3007, 3009). If the motor often runs at low speed, adjust the cooling factors to improve temperature estimation accuracy.
  • Overload Protection Settings: Make sure that overload protection is correctly enabled to prevent the motor from running under excessive load for extended periods.

3. Inspect the Drive and Motor Cooling Systems

The drive includes thermal resistors to monitor its internal temperature. If the cooling system fails, such as if the cooling fan malfunctions, the heat sink becomes clogged, or the ambient temperature is too high, this can affect both the drive and motor cooling.

  • Clean the heat sink and check the fan: Regularly clean the heat sink and ensure the cooling fan operates correctly for optimal heat dissipation.
  • Improve the working environment: Ensure that the drive and motor are in a well-ventilated area to avoid high ambient temperatures.

4. Check Cables and Connections

Inspect the cables between the motor and drive for damage or poor connections. Faulty cables can cause irregular currents, which may lead to overheating alarms.

5. Monitor and Maintain the System

For motors and drives running for long periods, regularly monitor their operation, logging key data like current and temperature. Adjust drive parameters according to the actual operating conditions to keep the system running within safe temperature limits.


4. Conclusion

Overheating alarms (2010) and fault code (F009) in the ABB ACS510 series drives are primarily triggered by the internal thermal model, which estimates the motor temperature based on current and runtime. This model eliminates the need for a direct motor thermal resistor connection while providing effective motor temperature monitoring and alarm functionality to prevent motor damage.

In practical use, adjusting drive parameters, performing regular maintenance, and controlling the motor load are key to preventing and resolving such issues. Through this analysis, electricians and technicians can better understand the mechanisms behind overheating alarms and faults, take appropriate measures to resolve them, and ensure the safe operation of both the motor and drive.