Posted on

In-depth Analysis of F8 System Fault Case in VACON NXP Frequency Converter (With Physical Analysis and Repair Approaches for Power Board PC00425)

I. Equipment Information and Fault Background

  • Frequency Converter Model: VACON NXP03005A2H1SSF
  • Power Unit: PA030052H1SSF
  • Input Voltage: 3×380–500V, 50/60Hz
  • Rated Current: 300A
  • Power Board Number: PC00425
  • Operating Time: 3 years and 241 days
VACON NXP03005A2H1SSF

Customer Description:

“I immediately encountered an F8 fault upon startup. The fault code is S1, with the sub-code indicating a power module and sub-module unit issue. We found that a component on the IGBT circuit board PC00425 had been removed. Q2 is missing. Q3 is still on the circuit board (marked as 4N150).”

Fault Interface Display:

  • Fault: F8 – System Fault
  • Module: Power
  • Submodule: Unit
  • Subcode: S1
  • DC-Bus: 551V (normal bus voltage)
  • No output established, frequency at 0Hz, fault occurs immediately upon startup
    Explanation: This fault occurs during the initial self-check phase of startup, before entering the carrier modulation stage. The root cause is a hardware self-check failure rather than a load or parameter issue.
Fault display status of VACON frequency converter

II. In-depth Interpretation of F8 + S1 Fault Meanings

In the VACON NXP fault system:

  • F8 = System Fault (system-level protection, usually indicating hardware anomalies)
    The meaning of the S1 sub-code is clearer when combined with the Module/Submodule fields:
    | Field | Display | Explanation |
    | —- | —- | —- |
    | Module | Power | Points to the power unit rather than the control board |
    | Submodule | Unit | Indicates the entire power module, not an individual IGBT phase anomaly |
    | Subcode | S1 | Pre-charge/discharge/IGBT drive feedback anomalies, hardware handshake failures |
    Conclusion:
    A communication handshake failure between the control board and the power unit PC00425 or non-compliant voltage/current in the measurement circuit → self-check termination → immediate F8 report.
Missing Q2 MOSFET

III. Visual Inspection Reveals Key Clue: Missing Q2 MOSFET

On-site Photo Identification:

  • The Q2 pad is vacant, and the device has been manually removed.
  • Adjacent Q3 is still in place, marked with 4N150.
  • The component is in a TO-220 package and connected to the heat sink area.
  • The pads are intact but show signs of removal, not factory-designed vacancies.

Component Information:

Device MarkingSilk ScreenInferred ModelInferred Function
Q34N150STP4N150 MOSFET (1500V/4A)Used for bus pre-charge/discharge or gate drive auxiliary switching
Q2MissingShould be the same or equivalent model as Q3Its absence will cause a break in the logic link → self-check failure
Explanation:
Q2 is not an optional component but a necessary part of the power circuit. The board has likely undergone unprofessional component removal or operated with damage. The missing device will lead to a disconnection in the pre-charge/detection/drive path → immediate F8 occurrence.
STP4N150 MOSFET (1500V/4A)

IV. Technical Analysis: Why Does the Lack of One MOSFET Directly Report F8?

In the NXP structure, the power board PC00425 is responsible for:

  • IGBT gate drive distribution
  • DC bus pre-charge control
  • Discharge circuit management
  • Voltage/current sampling feedback
  • Handshake feedback with the control main board
    If Q2/Q3 are used for pre-charge switches, the process is as follows:
    Power-on → the drive board sends a charging command to Q2/Q3.
    If Q2 is missing → the pre-charge circuit is open.
    The DC bus voltage change curve does not meet expectations.
    The control board detects an anomaly → self-check interruption.
    Immediate entry into F8 System Fault.
    Explanation: This explains the phenomenon of “F8 occurring immediately after pressing RUN, before any output,” which is fully logical.

V. Full Repair Process

(1) Power-off/Discharge Safety Confirmation

  • The bus must be discharged to below 50V.
  • For a 300A-rated device with high energy, high-voltage gloves and insulating shoes are required.
  • Never measure power-side devices while powered on.

(2) Essential Basic Tests

Inspection ItemJudgment Criteria
DC+ / DC- to UVW measurementIf there is conduction/low resistance = IGBT breakdown
Q3 MOSFET testNo short circuit from gate to ground/no short circuit between DS
Q2 pad and surrounding componentsCheck for burnt or open-circuit resistors, capacitors, and diodes
If the IGBT power module is already short-circuited → the IGBT module must be replaced first; otherwise, repairing the board is meaningless.

(3) Restore Missing Q2

  • Recommended model: STP4N150 or a same-specification MOSFET with a voltage rating ≥1500V and Id ≥4A.
  • Note: Add insulating pads and thermal grease.
  • Simultaneously replace peripheral components such as drive resistors and freewheeling diodes.

(4) First Power-on Must Be Current-limited

Recommended Method:

  • Start with a series-connected incandescent lamp or variable resistor.
  • Gradually increase the voltage while monitoring the bus.
  • Observe whether it passes the self-check and whether the F8 is cleared.
    If F8 persists:
  • Most likely, the drive IC/sampling circuit is damaged, or there is an abnormality in the upper-level control communication.
  • It is recommended to replace the entire PC00425 power board for greater reliability.

VI. Final Conclusion

The root cause of the F8 S1 fault reported by the customer’s frequency converter is:
The power board PC00425 has a hardware deficiency (Q2 MOSFET removed), leading to a self-check failure of the power unit and an immediate F8 report, preventing the system from entering operation.

Solution:

  • Restore the Q2 device to be the same model as Q3.
  • Check and repair surrounding drive and sampling components.
  • If the fault persists after repair → it is recommended to replace the entire PC00425 power board.

This case demonstrates:

  • Most system faults in VACON NXP are hardware faults at the power module level.
  • F8 is usually not a parameter issue, let alone a software fault.
  • Powering on with missing components after disassembly and repair → will inevitably lead to a self-check failure and an F8 report.